

Fertility & breast cancer

M. Grynberg, M.D., Ph.D. & H. El Hachem, M.D., M.Sc.

Division of Reproductive Medicine Hôpital Antoine Béclère University Paris 11 INSERM U782 Clamart, France

Breast Cancer

Incidence

Mortality

Siegel et al., Ca Cancer J Clin, 2013

Pregnancy desire

Age of first pregnancy \uparrow 30 years in France

Pison et al., Bull Cancer.2010

Survivors more concerned about future fertility than age and gravidity matched women

Ruddy et al., breast 2007

30% less toxic chemotherapy to help preserve fertility even at risk of increased cancer recurrence

Partridge et al., J Clin Oncol 2004

Fertility after breast cancer is a major concern

Reproductive aging

Dramatic decline of fecundity per cycle after 35 years

Gonadal toxicity of treatments

Ovarian toxicity

Before chemotherapy

After chemotherapy

Oktay et al., Cancer Treat Rev 2012

Blumenfeld et al., Best Pract Res Clin Obstet Gynaecol. 2012

Type of chemotherapy Risk of gonadotoxicity

High risk	Moderate risk	Low risk	Undetermined
Cyclophosphamide	Cisplatine	Methotrexate	Irinotecan
Cholarambucil	Adriamycine	5-Fluorouracil	Imatinib
Melphalan	Paclitaxel	Vincristine	
Busulfan		Actinomycin D	
Ifosfamide		Bleomycine	
Procarbazine			
Thiotepa			

Donnez et al., Hum Reprod Update 2006

Fecundity after cancer treatment

Assessment of the potential of fertility after CT remains a challenge

Multifactorial : tabacco, BMI, genetic

Natural fertility before chemotherapy often unknown

Current markers

Amenorrhea: a late marker

Markers of the follicular ovarian status

Chemotherapy-related amenorrhea

Short-term effect: acute ovarian insufficiency

Long-term effect: alteration of ovarian reserve

Wallace et al., Med. Pediatr. Oncol., 1993

Type of chemotherapy

Regimen	Age	Risk of amenorrhea
AC 4 c	40 - 49	35%
Docetaxel 4 c	31- 39	12%
Swain et al., 2009	< 31	6%
AC - EC	> 40	30 – 70 %
Partridge et al. 2007; 2008 Petrek et al. 2006	<u> 30 – 39</u>	< 20 %
CMF, CEF, CAF 6 c	>40	>80%
Deservited at 1000	<u> 30 – 39</u>	30 – 70 %
Goodwin et al., 1998 Goodwin et al., 1999	< 30	< 20 %
Partridge et al. 2005 Partridge et al. 2007		
FEC 6 c	> 40	73%
Rocne et al., 2006	< 40	38%
MTX + FU		Very low
Monoclonal Antibodies		Little evidence
Taxanes		Little evidence

Premature ovarian failure after CT

FSH

Total antral follicle count *** D P<0.001 NS 20.0 P<0.001 17.5 Total antral follicle count 15.0 12.5 10.0 17.05±1.21 16.77±1.63 (n=20) (n = 13)7.5 5.0 7.80 ± 0.85 (n=20)2.5 0.0 Control Pre-chemo Post-chemo

AFC

Ov. vol

AMH

Lutchman Singh et al., Br J Cancer 2007

Premature ovarian failure after CT

All women with AMH < 1.9 ng/ml became amenorrheic

AMH can predict long-term ovarian activity after chemotherapy

Women with ongoing menses had higher AFC

Anderson et al., JCEM 2011

Premature ovarian failure after CT

Poor ART outcome in cancer survivors

Barton et al., Fertil Steril 2012

Breast cancer treatment & impact on fertility

2 possibles impacts on patients' fertility

Ovarian toxicity of treaments

Postponing motherhood & facing the burden of natural ovarian aging

Fertility preservation

Fertility preservation

GNRH AGONISTS

Advantages

- No delay
- No ovarian stimulation
- No surgery
- Contraceptive
- Amenorrhea induced → ↓
 hemorrhagic phenomenons

Drawbacks

- Estrogen deprivation
- Short term effects: flush, vaginal dryness
- Long term effects: decrease of bone mineral density

Badawy A. Fertility and Sterility. 2009

Follow-up: 5 month

Bias +++

ZIPP study

Sverrisdottir A. et al., Breast Cancer Res Treat 2009

PROMISE-GIM6 study

No adjusetment for tamoxifen

Del Mastro et al., JAMA 2011

OPTION assay

Resumption of menstrual cycles in patients < 40 years

65% vs. 84%, p<0.05

Leonard et al., J Clin Oncol 2010

ZORO assay

Resumption of menstrual cycles

70% vs. 56.7%, NS

Gerber, et al., J Clin Oncol 2011

Breast cancer, +/- tamoxifen

Adjustment according to the HR status

the trial was stopped for futility

Munster et al., J Clin Oncol 2012

The use of GnRH analogs for ovarian protection remains controversial and continues to be investigated

Decreasing ovarian vascularization

Chemotherapy is gonadotoxic is prepubertal girls

Inhibiting FSH simply won't do

Routine administration, outside of a clinical trial, is currently not recommended

Fertility preservation

CONTROLLED OVARIAN STIMULATION

Ovarian stimulation aromatase inhibitors

Oktay K

Ovarian stimulation aromatase inhibitors

JOURNAL OF CLINICAL ONCOLOGY

VOLUME 26 · NUMBER 16 · JUNE 1 2008

ORIGINAL REPORT

Safety of Fertility Preservation by Ovarian Stimulation With Letrozole and Gonadotropins in Patients With Breast Cancer: A Prospective Controlled Study Amr A. Azim, Maria Costantini-Ferrando, and Kutluk Oktay

79 FP candidates vs. 136 controls

COH duration: 9.87 \pm 2.28 days

Peak serum E_2 levels: 58.4 – 1166 pg/mL

Mean number of oocytes retrieved: 10.3 ± 7.75

Mean number of oocytes or embryos cryopreserved: 5.97 \pm 4.97

No increased risk of recurrence at 23.4 months (3% vs. 8%, NS)

Azim et al., J Clin Oncol 2008

Fertility preservation

OVARIAN TISSUE CRYOPRESERVATION

Background

Ovarian tissue cryopreservation

Births after frozen ovarian tissue transplantation

Case no.	Diagnosis	Age at cryopreservation (y)	Chemotherapy before cryopreservation	Conception	Babies	Authors
123	Hodgkin's lymphoma	- 25	No	Natural	1.7	Donnez et al.
2	Neurotumor	19	No	Natural	10	Donnez et al.
3	Non-Hodgion's lymphoma	28	Yes	IVF-ET	1 (L	Melrow et al.
4	Hodgich's lymphoma	-24	Yes	Netural	Z	Demeestere et al.
5	Ewing sarcoma	27	No	INF-ET and rustural	2 :	Andersen et a
6	Hodgkin's lymphonu	25	Yes	IVF-ET	1 I I	Andersen et al.
7	Premature ovarian failure	25	No	Natural	1	Siber et al.
8	Hodgkin's lymphoma	20	No	Natural	2	Siber et al.
9	Polyanoitis	27	Yes	IMF-ET	1	Piver et al.
10	Breast cancer	36	No	IVF-ET	2	Pellicer et al.
11	Siccle cells	27	No	Natural	1	Poer et al.
12	Thalassemia	19	No	IVF-ET	2	Revel et al.
13	Hodgkin's lymphoma	. 27	Yes	Ovulation induction	1	Dittrich et al.
None Total, T	3 patients and 18 bables.					
Gasters for	using and follow transminetation. Card Co	W SDLF				

13 women, 18 babies

Grynberg et al., Fertil Steril 2012

Ovarian tissue graft

Risk of micrometastasis (Hematological diseases, breast cancer)

Dolmans et al., Blood 2010

Ovarian tissue graft

IN VITRO MATURATION

1930s: in vivo and in vitro maturation of mammalian oocytes

Pincus & Enzmann, Journal of experimental Medicine, 1935

Pincus & Saunders, Ann Rec, 1939

First pregnancy after IVM of oocyte « rescued » from an IVF cycle Veek et al., Fertil Steril 1983

First pregnancy after IVM of oocyte in an oocyte recipient

Cha et al., Fertil Steril 1991

First pregnancy after IVM of oocyte in a PCOS patient

Chian et al., Fertil Steril 1994

Avoid potentiel side effects of COS

PCOS

Nuclear maturation

Prophase I: VG

Métaphase I: GVBD

Métaphase II: 1st PG extrusion

Cytoplasmic maturation

Stock RNAm and proteins

Support the first steps of embryo development

Genome

Quiescent

Active

hCG priming

Increased maturation rates

Increased fertilization rates

Increased implantation rates

Chian et al., Human Reprod 2000

IVM results

Cycles of IVM (n)	25
Age (y)	35.4 ± 4.7
Mean oocytes retrieved (n)	10.3 ± 5.4
Maturation rate (%)	84
Fertilization rate (%)	87
Clivage rate (%)	95
Embryos transferred (n)	2.9 ± 0.6
Clinical pregnancy – no (%)	10 (40)

IVM results

Cycles characteristics and	outcomes of IN	/F versus IVM.	
	IVF group (n = 97)	(M group (n = 97)	P value
Cyde			
Follicles retrieved	22.7 ± 9.0	35.3 ± 18.6	<:0001
Eggs retrieved	17.2 = 9.9	15.8 ± 7.2	NS
Occytes/folicle	75.7	48.8	<.0001
Maturation rate	and the second	65.01	
Mature pocytes obtained*	12.3 ± 6.2	11.2 ± 7.0	NS
Ferblization rate	61.5	62.9	NS.
Cleaving embryos	9.6 ± 5.8	6.4 ± 4.8	1000.>
Embryos transferred	1.7 ± 0.6	1.9 ± 0.4	10043
Day 2	8	13	NS
Day 3	58	BG	0008
Day 5	24	0	<.0001
No transfer	7	47	NS.
Embryos frozen	7.6 ± 3.2	1.4 ± 2.7	.0058
Outcome			
Biochemical pregnancy	63.9 (62)	28.9 (28)	<:0001
Clinical pregnancy"	50.5 (49)	19.6 (19)	< .0001
Miscamage	12,2 (6)	15.8 (3)	NS
Live birth rate	44.3 (43)	16.5 (16)	< 0001
Implantation rate	39.4	12.9	<.0001
Twins	25.6 (11)	25 [4]	NS

Gremeau et al., Fertil Steril 2012

Impaired endometrium

Non-hCG-primed IVM system in PCOS

Comparative clinical outcomes of fresh and vitrified- warmed IVM embryo transfer.			
	Fresh	Vitrified- warmed	P value
Clinical pregnancy rate	5/53 (9,4%)	7/22 (31.8%)	.033
Positive hCG	7/53 (13.2%)	9/22 (40.996)	800.
Implantation rate	5/72 (6.9%)	7/32 (21.9%)	.043

Poorly when embryos are transfered in a fresh cycle.

De Vos et al., Fertil Steril 2011

Neonatal outcome

	RR	95%CI
IVM	1.19	0.35-3.25
IVF	1.01	0.52-1.90
ICSI	1.41	0.72-2.68

No increased rate of congenital abnormalities

Buckett et al., Obstet Gynecol 2007

Background

In vitro maturation of oocytes

No controlled ovarian stimulation

No increased serum E₂ levels

No time requirements

An alternative approach for fertility preservation

Background

IVM Follicular vs. Luteal phase			
	Follicular phase n=13	Luteal phase n=5	Р
No of oocytes aspirated	17.3 ± 13.5	12.8 ± 8.4	NS
Range	4 - 44	3 - 38	NS
MII oocytes after 24h	4.5 ± 3.8	4.0 ± 5.7	NS
Total MII oocytes	9.5 ± 7.73	7.0 ± 7.6	NS
Maturation rate, %	57.8 ± 29.2	48.6 ± 18.3	NS
Fertilization rate, %	63.2 ± 27.3	69.2 ± 47.4	NS
Mean total oocyte and embryo cryopreservation	7.8 ± 7.5	6.4 ± 6.6	NS

Maman et al., Fertil Steril 2011

IVM for FP in breast cancer patients Clamart

Prospective study

102 breast cancer patients, candidates for urgent fertility preservation using IVM

Inclusion criteria

No previous chemotherapy

Results

	Follicular phase (n=60)	Luteal phase (n=42)	Р
Age (years)	32.4 ± 4.3	31.1 ± 4.9	0.513
BMI (Kg/m²)	22.1 ± 3.7	22.3 ± 3.1	0.778
Gestity • 0 • 1-2 • > 2	31 (52) 24 (40) 5 (8)	22 (56) 14 (36) 3 (8)	0.904
Parity * 0 • 1-2 • >2	42 (70) 13 (22) 5 (8)	28 (72) 9 (23) 2 (5)	0.885
Menstrual cycles • Regular • Irregular	52 (87) 8 (13)	29 (74) 10 (26)	
Serum P ₄ levels (ng/mL)	0.14 ± 05	3.52 ± 0.8	0.001
AFC	17.4 ± 7.7	18.9 ± 11.1	0.710
Serum AMH levels (ng/mL)	3.3 ± 2.0	3.9 ± 2.8	0.451

Results

	Follicular phase n=60	Luteal phase n=42	Р
No immature oocytes recovered	8.4 ± 5.0	9.2 ± 6.7	0.426
			0.044
Oocytes output rate (%)	48.7 ± 4.8	47.3 ± 5.0	0.643
Maturation rate at 24h (%)	72.2 ± 3.1	70.3 ± 2.3	0.752
Maturation rate at 48h (%)	7.0 ± 2.9	8.4 ± 1.7	0.618
Total maturation rate $(%)$	70.2 ± 2.5	787 + 20	0.012
Total maturation rate (76)	19.2 ± 2.5	10.1 ± 2.0	0.913
No mature oocytes	6.9 ± 3.7	7.4 ± 5.2	0.131
Fertilization rate (%)	78.7 ± 2.8	78.7 ± 2.0	0.597

Conclusion

*Gonadotoxic*ity of chemotherapy, combined with physiological ovarian aging may alter the fertility potential, both natural and with ART

Currently there is *no adequate tool* to correctly predict fertilty in a patient diagnosed with breast cancer

6

Many *fertility preservation* options are available

Oocyte cryopreservation

Ovarian tissue cryopreservation

Risk of micrometastasis

Problem in BRCA1 patients

Moderate ovarian toxicity of FEC/T

Oophorectomy after 30 ys

Efficiency +++

COS and increased E₂ levels

Embryo cryopreservation

Medical treatment

Easy Efficiency? Inocuity?

Acknowledgments

IVF Team	Surgery team	Reproductive biology team
Pr. R. Fanchin	Dr. X. Deffieux	Dr. N. Frydman
Pr. R. Frydman	Dr. E. Faivre	Dr. L. Hesters
Dr. V. Gallot	Dr. C. Trichot	Dr. M. Poulain
Dr. S. Sebag-Peyrelevade	Dr. A. Viot	
Dr. S. Le Parco		
Dr. S. Doumerc		Psychological team
Y. Journo		Dr. M. Flis Treves
		R. Treves